

Photo: gorodenkoff/iStock

Ashwani AggarwalWorkgroup Leader, Skills Policy,
Systems and Digitalisation, ILO

Juan Iván Martín Lataix Digitalisation Specialist SKILLS, ILO

World is changing

Which jobs? Which tasks? Which Skills and qualifications?

Society

Environment

Economy

Politics

Digital

Digitalization is rapidly changing the world

Global Internet access

76.4%

Mobile phone ownership

Advanced technology adoption

100 milion

Chat GPT active users in 2 months

57%

Source: ITU 2020

Uneven Adoption of Advanced Technologies

ROBOTICSFive countries dominates

China, Germany, Japan, Korea and the US

- account for 73 per cent of the total global robot installations

INTERNET OF THINGS
Concentrated in top 7 countries

the US, China, Japan, Germany Korea, France and the UK – account for nearly 75 per cent of worldwide spending on IoT

ARTIFICIAL INTELLIGENCE

Patents files, the United States leading the way

China quickly catching up

Employment projections: Digital scenario

Net increase in jobs

²⁴ million

Youth will take up

6.4 million

► Table 3.3 Employment effects of extending broadband coverage, world and by region and country income group, 2022–30 (thousands)

ILO region	2022	2025	2030
Africa	2 042	3 489	6 138
Americas	391	1 549	6 224
Arab States	140	458	869
Asia and the Pacific	3170	4 658	8 853
Europe and Central Asia	123	178	681
World	5 904	10 681	23 977
High income	201	816	1 993
Upper middle income	886	2 611	8 656
Lower middle income	3 921	5 249	9 338
Low income	858	1 655	2 778

Note: See Appendix A for the classification of regions.

Source: E3ME model of Cambridge Econometrics.

Employment projections: Digital scenario

Eventually, strong "Indirect" and "induced" effects through production processes and consumption

- Initially, concentrated in construction and ITC
- Eventually, cascade into retail, transport, other services and health care

► Table 3.4 Employment effects of extending broadband coverage, by sector and age group, 2022–30 (thousands)

Sectors	2022			2025		2030	
	Youth (15-29)	Adult (30+)	Youth (15-29)	Adult (30+)	Youth (15-29)	Adult (30+)	
Agriculture and forestry	129	343	345	983	427	1 458	
Extractive industries	0	2	1	9	4	25	
Manufacture of electronic and related products	156	347	168	398	227	568	
Manufacture of chemicals, metallic, non-metallic and related products	53	117	81	202	215	485	
Other manufacturing	54	136	145	406	481	1 269	
Energy and utilities	0	1	2	6	5	19	
Construction	782	1 905	633	1 562	597	1 542	
Distribution, retail, hotels and catering	290	581	809	1 711	2 021	5 111	
Transport and storage	91	243	221	608	493	1 374	
Information and communication	189	326	212	393	383	743	
Other services	32	124	213	765	965	2 962	
Education	-15	-65	19	62	74	298	
Health and social care	21	69	151	526	433	1 538	
Public administration and defence	-1	-3	9	38	47	212	
Whole economy	1 780	4 126	3 008	7 670	6 372	17 605	

Source: E3ME model of Cambridge Econometrics.

Employment projections: Digital scenario

Female share in the jobs gains

2022

20.2%

2030

35.8%

► Table 3.5 Youth employment effects of extending broadband coverage, world and by region and sex, 2022–30 (thousands)

ILO region		2022	2030		
	Youth male	Youth female	Youth male	Youth female	
Africa	510	170	1 256	761	
Americas	98	28	922	685	
Arab States	30	4	188	32	
Asia and the Pacific	761	149	1 473	630	
Europe and Central Asia	16	5	68	54	
World	1 421	359	4 094	2 278	

Note: See Appendix A for the classification of regions. "Youth" refers to ages 15–29.

Source: E3ME model of Cambridge Econometrics.

TVET in LMICs: A Digital Perspective

Empowering Digital Skills for Inclusive Growth in LMICs

1. Impact of COVID-19 on TVET:

- ✓ Pandemic exposed vulnerabilities in TVET provision
- ✓ Digital divide hindered remote instruction in LMIC
- ✓ Practical skills training and work-based learning disrupted

2. Scarcity of Digital Skills:

- ✓ Slow response of TVET systems to the increasing demand for digital skills
- ✓ COVID-19 revealed weaknesses in digital skills among students and teachers
- ✓ Irrelevant curricula and outdated training hindered skill acquisition

3. Strategies for Enhancing Digital Skills:

- ✓ Importance of upskilling TVET teachers for effective digital learning
- ✓ Public-private partnerships are crucial for fostering digitalisation
- ✓ Initiatives in South Africa and Kenya exemplify collaboration for digital skills development

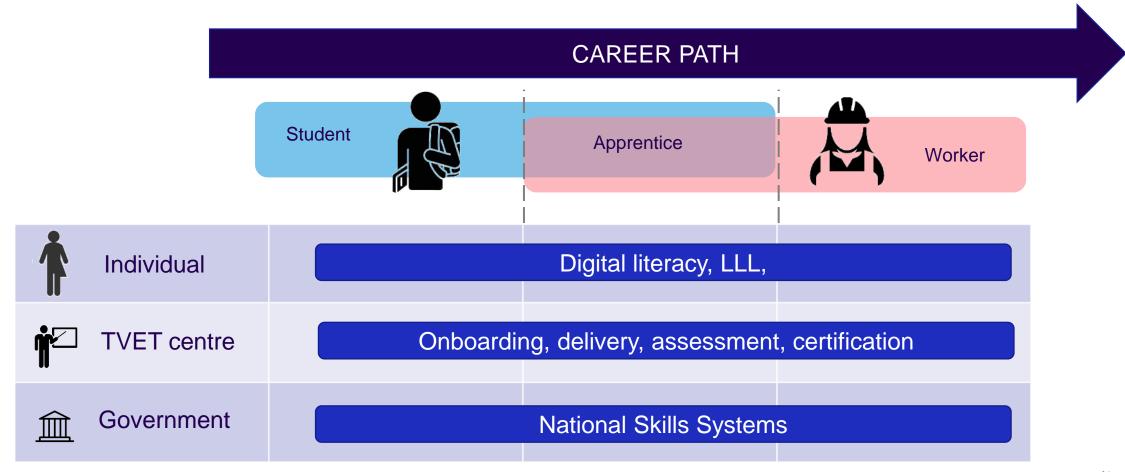
4. Unique TVET Role in LMICs: A Digital Imperative

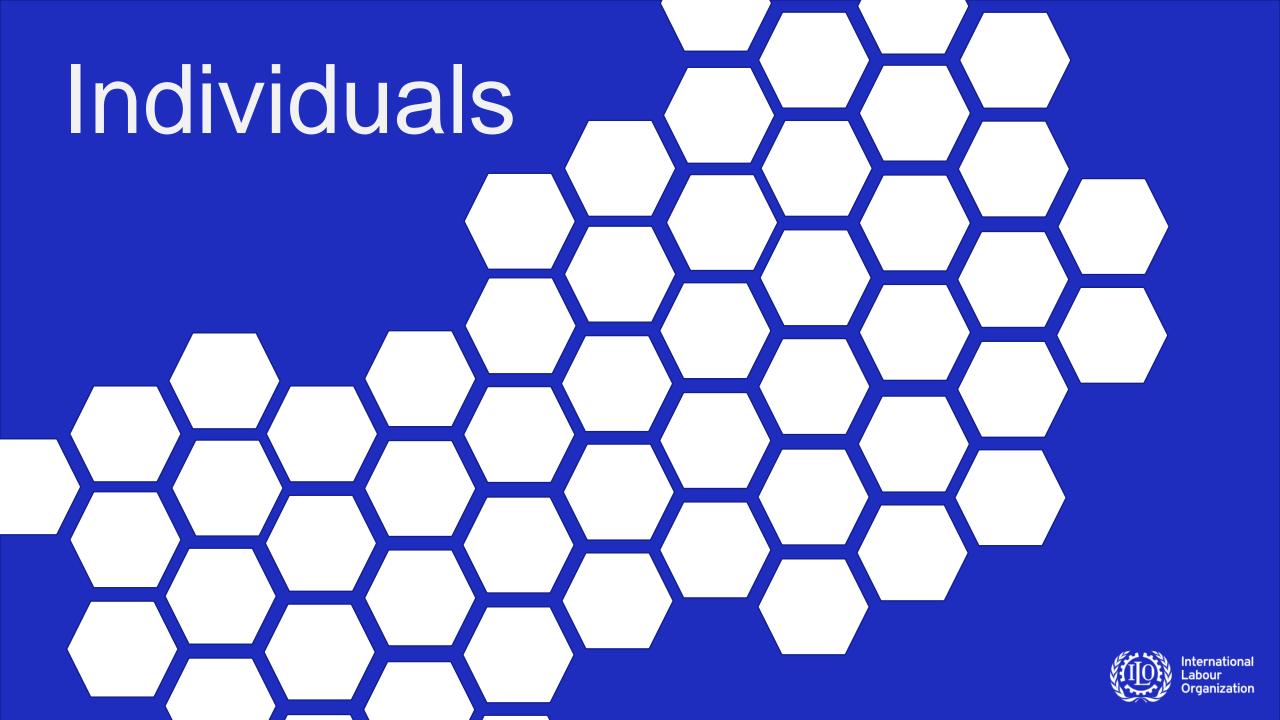
- ✓ Quality TVET is crucial for economic growth in the digital era
- ✓ TVET enhances employability in LMICs, aligning skills with digital market demands
- ✓ Contributes to SDGs, fostering inclusive economic growth in the digital age
- ✓ Employer surveys highlight the significance of technical digital skills

5. Adapting to Digital Labour Market Dynamics:

- ✓ LMIC-focused TVET adapts to digital self-employment, green, and entrepreneurship demands
- ✓ Prioritizes training for greener digital jobs, aligning with sustainable practices

6. TVET's Role in Green Transition:


- ✓ Anticipated demand for green skills in TVET due to the global shift to a greener economy
- ✓ Uncertainty exists regarding the skills content and pace of change
- ✓ Initiatives in the Philippines and South Africa demonstrate efforts to align TVET with green job demands


Key Takeaway:

- TVET in LMICs plays a pivotal role in addressing specific challenges, with a digital focus on skills alignment with local needs, emphasising digital literacy, and responding to the evolving demands of the digital economy.
- Therefore, TVET faces challenges in adapting to digital and green transitions, but strategic reforms and collaborations offer opportunities for improvement.

A complex problem at different levels:

Core Skills

Social and emotional skills

- **▶** Communication
- ► Collaboration and teamwork
- ► Conflict resolution and negotiation
- ► Emotional intelligence

Basic skills for green jobs

- ► Environmental awareness
- Waste reduction and waste management
- ► Energy and water efficiency

Core skills

Basic digital skills

- ▶ Use basic hardware
- ▶ Use basic software
- ➤ Operate safely in an online environment

Cognitive and metacognitive skills

- ▶ Foundational literacies
- Analytical and critical thinking
- ► Creative and innovative thinking
- ▶ Strategic thinking
- ▶ Problem-solving and decision-making
- ► Self-reflection and learning to learn
- Collect, organize and analyse information
- ▶ Planning and organizing
- ► Career management

Digital Skills

Basic and generic digital skills

- Basic digital literacy
- Software-user skills such as spreadsheets and word processing
- Internet browsing, Social media
- ▶ Email

Intermediate digital skills

- Enable us to use digital technologies in even more meaningful and beneficial ways
- Ability to critically evaluate technology or create content
- Digital graphic design
- Digital marketing

Advanced digital skills

- Skills needed by specialists in ICT professions
- computer programming and network management
- AI, big data, coding, cybersecurity, IoT and mobile app development etc

New ways

Time based

Textbook-driven

Passive learning

Teacher-centered

Paper assessment

Print

Isolation

Fact & memorization

NEW WAYS

Outcome based

Research-driven

Active Learning

Student-centered

Multiple forms assessment

Multimedia

Collaboration

Higher-order thinking

Towards blending

Upcoming publication for Digitalisation of TVET programmes

3. Developing Learning Situations

5. Developing and Implementing E-assessments

2. Prioritizing Occupations andCompetencies

4. Choosing a Blended Learning Format

6. Feedbackloop

Key challenges for TVET institutions

- Adapting to Rapid Changes: TVET and skills systems had to rapidly adapt to the learning crisis and accelerate the introduction of digital technologies.
- Responding to New Skills Demand: These systems are facing multiple challenges to efficiently respond to the external demand for new skills from our increasingly digital society and enterprises.
- Undergoing Digital Transformation: TVET institutions themselves are engaging in their own digital transformation, which presents its own set of challenges.
- The World fast changes: Globalization, Technological Progress, Demographic Transformation, and Climate Change. TVET needs to adapt to these broad societal and economic changes.
- **Certifications**: The nature and scope of digitalisation is likely to affect the management, Delivery, Assessment, and Certification aspects of technical and vocational education and training.
- Apprenticeships: within SMEs are often not using latest technologies

Skills Systems

National Skills Systems

Governance

Financing

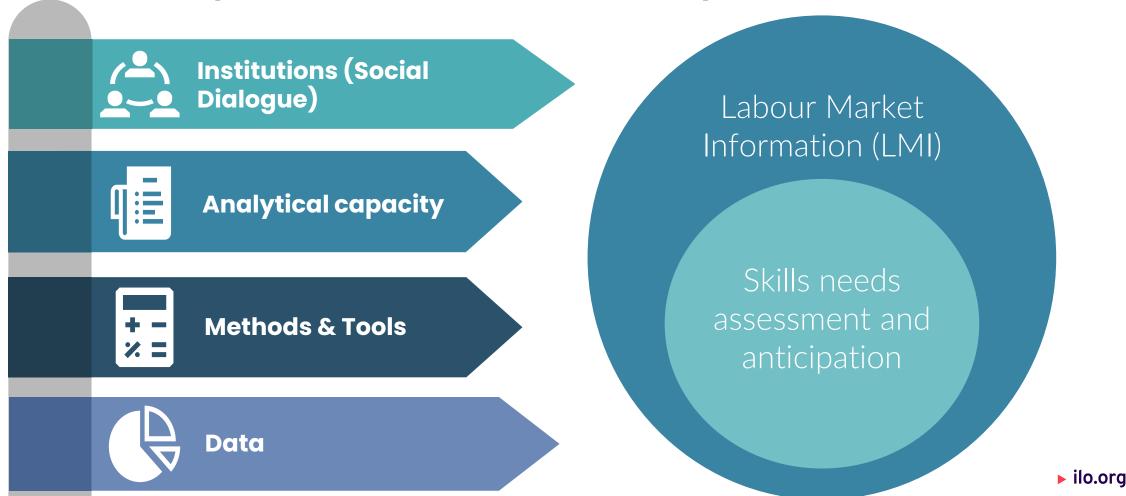
Skills needs anticipation

Training delivery assessment and certification

Monitoring and evaluation

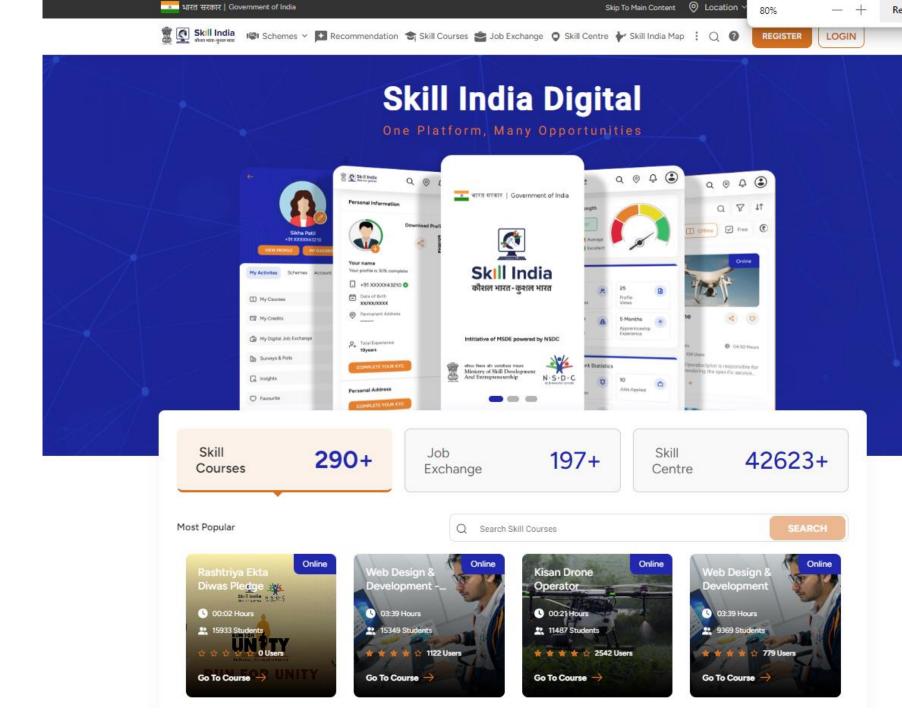
Quality Assurance

Driving Principles

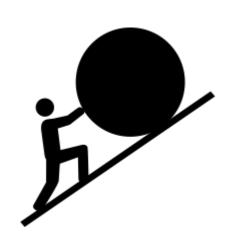

Efficiency

Equity

Relevance



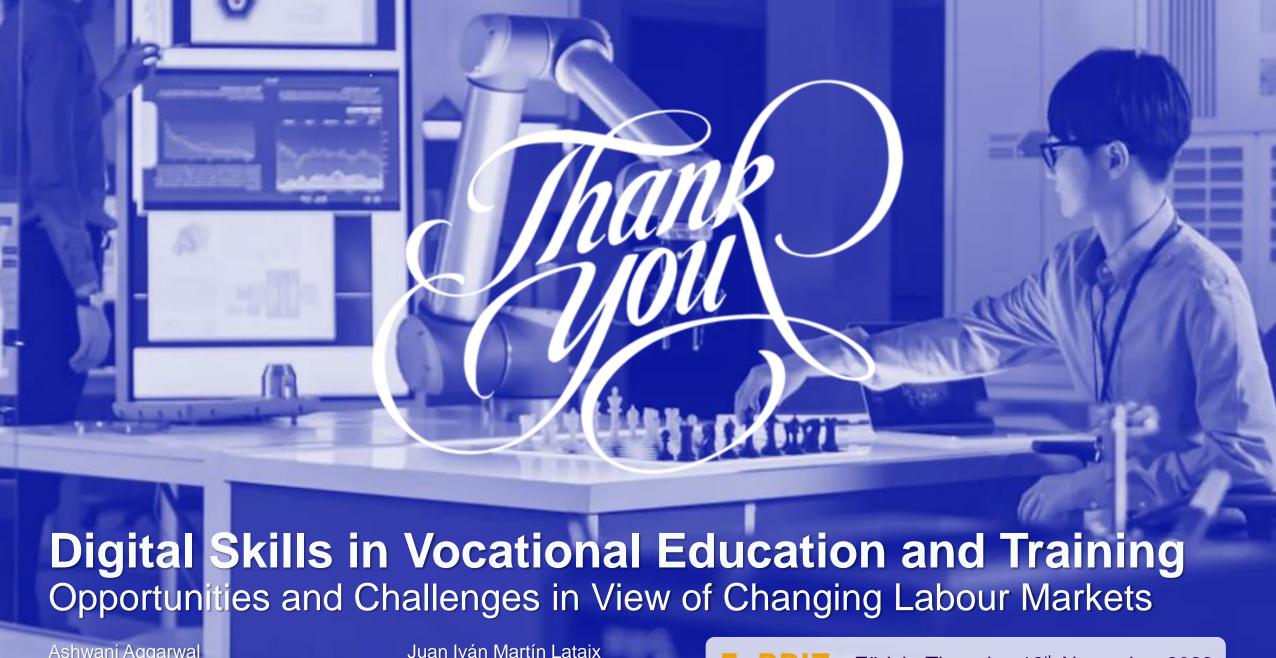
Essentials components of skills needs anticipation



Country example: India

Key challenges for governments

- Ensuring equal access to digital resources: addressing the digital divide and access to the necessary digital tools and resources.
- Developing relevant digital skills: ensure individuals are equipped with the digital skills that are relevant to the current and future labor market.
- Adapting to rapidly changing technology: ensure that their National Skills Systems can adapt quickly to fast tech changes
- Ensuring quality of digital learning: governments need to ensure quality of digital learning and that it effectively leads to the acquisition of relevant skills.
- Data privacy and security issues: increase of digital learning and digital tools, increases issues related to data privacy and security.
- Promoting lifelong learning: governments need to promote a culture of lifelong learning.



- Digital skills are not only for IT professionals, everyone needs them!

- We all need to upskill and reskill during our career path

- Covid was an accelerator, but now there is fatigue

- Systems level is often forgotten but critical to build long-term solution

Ashwani Aggarwal Workgroup Leader, Skills Policy, Systems and Digitalisation, ILO

Juan Iván Martín Lataix Digitalisation Specialist SKILLS, ILO

Zürich, Thursday 16th November 2023